SEQ(1) General Commands Manual SEQ(1)

NAME
seq — generate numerical sequence

SYNOPSIS
seq[-w|-f ormat][-s eparator]|[from [increment]] to

DESCRIPTION
Writes numbers from from (default 1) up (down) to to, in increments of increment (default 1),
separated by newlines, to the standard output stream. All numbers are Iong doubles and must be
numbers. increment may not be 0.

Unless an explicit format is specified with —£, the default if both from and increment are finite is
"% £" with fixed minimal precision equal necessary to recover the numbers, otherwise "%$g".

Be wary of IEEE Std 754-1985 precision loss when dealing with very large boundaries and small

increments!

OPTIONS
-w, ——equal-width Left-pad numbers with "0"s, such that each output line has the same width.
—-f, ——format=format Use format, which must contain exactly one print £(3)-style double

or long double format specifier (% [L]eEfFgGaA, including any
width/precision/&c. parameters); a literal % is obtained with $%.

—-s, ——separator=sep Separate numbers with sep instead of a newline. A newline always fol-
lows the final number.

EXAMPLES
$ seq 3

$ seq -ws"$ (printf \t’)" -1 0.782 4
-1.000 -0.218 00.564 01.346 02.128 02.910 03.692

$S seq —-f£'%+.2£%%" -341e-1 34le-2 341e0 | shuf -n3
+156.86%
-10.23%
+109.12%

$ seq 2e20 200000000000000000002
200000000000000000000

SEE ALSO
print £(3), strtold(3)

STANDARDS
Compatible with the GNU system. A mostly-compatible seq exists in NetBSD 3.0 and FreeBSD 9.0,
which automatically inverts the increment if from > to, adds —t to replace the final newline,
parses backslash-escapes in —s£t, and, most importantly, indiscriminately defaults to "$g" — meaning
that sufficiently large (1°‘000°000) numbers are formatted in exponent style by default.

voreutils 5a9f9f29 November 23, 2022 1

SEQ(1) General Commands Manual SEQ(1)

HISTORY
Appeared in Version 8 AT&T UNIX as seq(1):
seq [—-w] [—ppicture] [first [incr]] last
With a default format of "% .0£" (rounded to an integer). —p induced the desired format from the num-
ber provided, in the
[-][0anything] . . .[.[anything] . . .]
format, with leading zeroes setting the width. As a noted bug, exponent (the only other recognised
floating point format, with feEgG available) pictures are not recognised.

Version 10 AT&T UNIX defaults to "$g", making —w iterate over all values to determine the width
(ignoring it for final values over 1°‘000°000), and replaces —p with an unchecked —£.

Both implementations use doubles and pre-compute the iteration count, which must fit in an int. Ad-
ditionally, Version 10 AT&T UNIX introduces a rounding error to that computation, causing 0.3 0.19
Itoendat1.06 instead of 0.87.

Plan 9 from Bell Labs inherits the Version 10 AT&T UNIX implementation. The iteration count was
dropped at some indeterminable point after the fourth edition, at the expense of not terminating for big
enough input.

BUGS

Sticking to a hard-line 1ong double behaviour when all arguments are both integral and in range of a
64-bit integer could be considered a bug, sce EXAMPLES for the side-effects of this precision loss.
However, one could say that a strict IEEE Std 754-1985 reading of (2e21 — 2e20)/(1 —(1 % &) =
(with £= 9 at the low end) is the only valid interpretation, especially with the inconsistency brought on
between something like seq 2e20 2e21 and seq 220 2000000000000000000000.1 — the
former would output 1.8e21 numbers, the latter infinitely many. Most systems would agree; the GNU
system wouldn’t, but it also does insane shit to seq arguments, so who knows; it’s important to not lose
the forest for the GTrees. What do the users expect? What are the corner-cases (of the implementation,
but more-so the user expectations)?

voreutils 5a9f9f29 November 23, 2022 2

