
SEQ (1) General Commands Manual SEQ (1)

NAME

seq — generate numerical sequence

SYNOPSIS

seq [−w|−f ormat] [−s eparator] [from [increment]] to

DESCRIPTION

Wr ites numbers from from (default 1) up (down) to to, in increments of increment (default 1),
separated by newlines, to the standard output stream. All numbers are long doubles and must be
numbers. increment may not be 0.

Unless an explicit for mat is specified with −f, the default if both from and increment are finite is
"%f" wit h fixed minimal precision equal necessary to recover the numbers, other wise "%g".

Be war y of IEEE Std 754-1985 precision loss when dealing with ver y large boundar ies and small
increments!

OPTIONS

−w, −-equal-width Lef t-pad numbers with "0"s, such that each output line has the same width.
−f, −-format=format Use format, which must cont ain ex actly one printf(3)-style double

or long double format specifier (%[L]eEfFgGaA, including any
widt h/precision/&c. parameters); a literal % is obtained with %%.

−s, −-separator=sep Separate numbers with sep instead of a newline. A newline alway s fol-
lows the final number.

EXAMPLES

$ seq 3

1
2
3
$ seq -3

$ seq -1 -1 -3

-1
-2
-3

$ seq −ws"$(printf ’\t’)" -1 0.782 4

-1.000 -0.218 00.564 01.346 02.128 02.910 03.692

$ seq −f’%+.2f%%’ -341e-1 341e-2 341e0 | shuf −n3
+156.86%
-10.23%
+109.12%

$ seq 2e20 200000000000000000002

200000000000000000000

SEE ALSO

printf(3), strtold(3)

STANDARDS

Compatible with the GNU system. A mostly-compatible seq exists in NetBSD 3.0 and Fr eeBSD 9.0,
which automatically inver ts the increment if from > to, adds −t to replace the final newline,
parses backslash-escapes in −sft, and, most impor tantly, indiscr iminately defaults to "%g" — meaning
that sufficiently large (1‘000‘000) numbers are for matted in exponent style by default.

voreutils 5a9f9f29 November 23, 2022 1

SEQ (1) General Commands Manual SEQ (1)

HISTORY

Appeared in Version 8 AT&T UNIX as seq(1):
seq [−w] [−ppicture] [first [incr]] last

With a default for mat of "%.0f" (rounded to an integer). −p induced the desired for mat from the num-
ber provided, in the

[−][0anyt hing] . . .[.[anyt hing] . . .]
format, with leading zeroes setting the width. As a noted bug, exponent (the only other recognised
floating point for mat, wit h feEgG av ailable) pictures are not recognised.

Version 10 AT&T UNIX defaults to "%g", making −w iterate over all values to deter mine the widt h
(ignor ing it for final values over 1‘000‘000), and replaces −p wit h an unchecked −f.

Both implement ations use doubles and pre-compute the iteration count, which must fit in an int. Ad-
ditionally, Version 10 AT&T UNIX introduces a rounding error to that comput ation, causing 0.3 0.19
1 to end at 1.06 instead of 0.87.

Plan 9 from Bell Labs inher its the Version 10 AT&T UNIX implement ation. The iteration count was
dropped at some indeter minable point after the four th edition, at the expense of not ter minating for big
enough input.

BUGS

Sticking to a hard-line long double behaviour when all arguments are bot h integ ral and in range of a
64-bit integer could be considered a bug, see EXAMPLES for the side-effects of this precision loss.
Howe ver, one could say that a str ict IEEE Std 754-1985 reading of (2e21 − 2e20) / (1 − (1 % ε)) = ∞
(wit h ε ≈ 9 at the low end) is the only valid interpret ation, especially wit h the inconsistency brought on
between something like seq 2e20 2e21 and seq 2e20 2000000000000000000000.1 — the
former would output 1.8e21 numbers, the latter infinitely many. Most sys tems would agree; the GNU
system wouldn’t, but it also does insane shit to seq arguments, so who knows; it’s impor tant to not lose
the forest for the GTr ees. What do the users expect? What are the corner-cases (of the implement ation,
but more-so the user expect ations)?

voreutils 5a9f9f29 November 23, 2022 2

