
PRINTF (1) General Commands Manual PRINTF (1)

NAME

printf — for mat dat a

SYNOPSIS

printf format [data] . . .

DESCRIPTION

Wr ites format to the standard output stream, interpreting escape sequences and data conversions.

If there are any % conversion specifiers, this is repeated until all data are exhausted.

Escapes

\a, \b, \t, \n, \v, \f, \r, \e The bell, backspace, tab, line feed, ver tical tab, for m feed, carriage retur n and

escape characters, respectively.

\", \\ Just " and \.

\c If inside %b: exit instantly.

\O, \OO, \OOO Byte corresponding to oct al value O (OO, OOO).

\xX, \xXX Byte corresponding to hex adecimal value X (XX).

\uXXXX, \UXXXXXXXX A represent ation of the Unicode character corresponding to the hexadecimal

value XXXX (XXXXXXXX) in the current locale. If the character is out of

range (0 or greater than 0x0010‘FFFF) or the conversion failed, "\uXXXX" if

<= 0xFFFF ("\UXXXXXXXX" other wise) is output instead.

All others passed through.

Conversions

For an in-depth descr iption of conversion specifiers, see printf(3). The format used is identical, ex-

cept %b and %q are added, and size specifiers (like ll, h, L for long long, short, long

double) have no effect: all integers are 64-bit [unsigned] long longs, and all floating-point num-

bers are 128-bit long doubles.

If there are more conversion specifiers than data, 0 is used for numeric conversions

(%diouxXeEfFgGaAcC) and the null str ing for str ing conversions (%sSbq).

Partial conversions yield a diagnostic, but processing continues. Numbers can also be specified as ’C or

"C, in which case they’re equal to the value of the character in the current locale following the ’/" (t he

next byte if invalid, or 0 if there are none).

Numbered conversions are specified by starting a conversion with %nth$ instead of just %: the data

used will be the nth argument. In this mode, repetitions happen from after the highest nth each itera-

tion. These may not be mixed with unnumbered conversions.

Variable width and precision (%∗ .∗ d, %3$∗ 1$.∗ 2$d) are suppor ted, and those arguments are in-

tepreted as ints.

%% A literal %; no data.

%d, %i Signed decimal integer.

%u Unsigned decimal integer.

%o Unsigned octal integer.

%x, %X Unsigned hexadecimal integer. Wit h %X – upper-case letters.

%e, %E Floating-point number in exponent (1.234e±56) for mat. With %E – capit al E, NAN, &c.

%f, %F Floating-point number decimal (123.456) for mat rounded to precision (default: 6). Wit h %F –

capit al NAN, INF, &c.

%g, %G Equivalent to %f (%F) for floating-point numbers if ≥ 0.0001 and < 10^precision (default:

6), other wise %e (%E).

%a, %A Floating-point number in hexadecimal exponent (0xa.bcde±f) for mat. With %A – capit al let-

ters, X, NAN, &c.

voreutils 5a9f9f29 July 11, 2024 1

PRINTF (1) General Commands Manual PRINTF (1)

%c, %C First byte of data, NUL byte if empty.

%s, %S data

%b data wit h \ escapes (and \c) intepreted, but octal \O[O[O]] escapes may also be prefixed with a

0 (like \0O[O[O]]). If a precision is specified, limit output to that many bytes.

%q data in a for mat that can be used to fully recover it as a single token in a sh(1)-style shell —

pr intable characters are wrapped in ’, others as octal $’ escapes, except for \a, \b, \t, \n, \v, \f,

\r, and \e. If a precision is specified, for mat that many bytes.

EXIT STATUS

1 if no digits were specified for an \x escape, not enough digits for \u and \U escapes or no conversion, an

invalid, or an unknown one was specified after a %; these conditions also immediately abor t processing.

Additionally, 1 is retur ned but processing continues if a non-’/" number had trailing data or parsing failed

altoget her,

EXAMPLES

Assuming a default UTF-8 locale:

$ printf ’%02X;’ 12 012 0x12 \"A # no newline

0C;0A;12;41;

$ printf ’%-7s: %gkg\t$%.2f\n’ Bananas 3.5 4.51 Kiwis 2 3.19 Bread 20.21

Bananas: 3.5kg $4.51

Kiwis : 2kg $3.19

Bread : 20.21kg $0.00

$ printf ’\44\x9\U0001F629%0∗ d\n’ 3 \"Q
$ = 081

$ LC_ALL=C printf ’\44\x9\U0001F629%0∗ d\n’ 3 \"Q
$ \U0001F629081

$ printf ’%q\n’ "$(printf ’\44\x9\U0001F629%0∗ d’ 3 \"Q)"
’$’$’\t’’= 081’

$ LC_ALL=C printf ’%q\n’ "$(printf ’\44\x9\U0001F629%0∗ d’ 3 \"Q)"
’$’$’\t\360\237\230\251’’081’

$ printf ’%4$∗ 5$s %3$∗ 5$s %2$∗ 5$s %1$∗ 5$s\n’ abcd abc ab a 5
a ab abc abcd

SEE ALSO

printf(3), strtold(3), strtoull(3)

STANDARDS

Confor ms to IEEE Std 1003.1-2024 (“POSIX.1”), except that floating-point numbers are parsed with

strtold() rat her than strtod() and are allowed a ’/" prefix . POSIX specifies only the following es-

capes in the format: \\, \a, \b, \f, \n, \r, \t, \v, and \O[O[O]]; and in %b: \\, \a, \b, \f, \n, \r, \t, \v,

\0O[O[O]], and \c. The standard specifies floating-point (%aAeEfFgG) conversions as optional, and re-

quires only %diouxXcs and %b. The behaviour of \c that was sliced out of %b wit h precision (for

ex ample "%.2bX" and "abcd\c") is left unspecified: some implement ations produce "ab" (they peek

the "\c" and this aborts processing), others, like this one, produce "abX", (\c wasn’t seen and thus doesn’t

exist).

%CS are extensions, provided for exhaustion of IEEE Std 1003.1-2024 (“POSIX.1”) against X/Open Sys-

tems Interfaces (XSI) printf(3); they’re equivalent to %lc and %ls, and hence equivalent to %c and

%s. Don’t use them.

%q is an extension, originating from the GNU system, whose printf doesn’t understand the precision

argument to %b — this is a confor mance bug, nor to %q — this implement ation’s is an extension.

voreutils 5a9f9f29 July 11, 2024 2

PRINTF (1) General Commands Manual PRINTF (1)

Variable width and precision (%∗ .∗ d, %3$∗ 1$.∗ 2$d) are an extension, available universally. The

st andard recommends implementing it, and using var iable substitution into format instead.

The behaviour of mixing numbered and serial conversions is unspecified: this implement ation refuses the

format outr ight; some other implement ations st art consuming data, starting at some position.

If a %c conversion gets an emp ty str ing it may eit her produce a NUL byte or nothing at all. The for mer

is near-universal.

Beyond what’s specified by the standard, most sys tems support a wild array of \ escapes and conversions;

be war y.

HISTORY

Created by X/Open Portability Guide Issue 4 (“XPG4”) to provide a portable way to mimic AT&T

System V Release 3 UNIX echo wit h %b, in contrast to the incompatible Version 7 AT&T UNIX echo,

only suppor ting first-argument −n, cf. echo(1).

IEEE Std 1003.1-2024 (“POSIX.1”) adds numbered Conversions. The maximum nth is the same as for

printf(3) (NL_ARGMAX), but most implement ations do not have a limit.

voreutils 5a9f9f29 July 11, 2024 3

