
LN (1) General Commands Manual LN (1)

NAME

ln — add file links, create symbolic links

SYNOPSIS

ln [−v] [−s [−r]]|[−P|−L] [−f|−i]
[−b|−-backup=off|simple|numbered|existing [−S suff]] [−n|−T]
file [link|into]

ln [−v] [−s [−r]]|[−P|−L] [−f|−i]
[−b|−-backup=off|simple|numbered|existing [−S suff]] [−n] file... into

ln [−v] [−s [−r]]|[−P|−L] [−f|−i]
[−b|−-backup=off|simple|numbered|existing [−S suff]] [−n] −t into file . . .

DESCRIPTION

Adds link to file. Wit h −s, creates symbolic link wit h contents file.

On most filesystems, each file (i-node) can be found under any amount of indistinguishable names
(link s). (Director ies are usually an exception to this.) ln makes file av ailable under the name link.
If only file is given, or into is a director y, the link names are as-if given to basename(1): a/b/c
becomes c or into/c, respectively.

Symbolic links cont ain a pat h, and when encountered during path resolution, are "followed" by restaring
parsing the path from the director y cont aining the symbolic link. Wit h −s, file is used directly as the
content of links: beware of ln −s 2024/ln.html live/ creating live/ln.html →
2024/ln.html, ultimately resolving to live/2024/ln.html, which will likely dangle.

−r can be used to re-calculate the relative pat hs to have −s behave more like the default link behaviour:
ln −sr 2024/ln.html live/ wants to link from $PWD/live/ln.html to
$PWD/2024/ln.html, and so will create a link containing ../2024/ln.html.

OPTIONS

−v, −-verbose Log each link created (and back-up path, if any) to the standard output stream.

−s, −-symbolic Create symbolic links.
−r, −-relative Compute the relative pat h from link to file and make that the content of

link.

−P, −-physical If file is a symbolic link, link to it directly. (Since you can’t edit symbolic
link s wit hout recreating them, this is equivalent to copying the symbolic link.)
This is the default.

−L, −-logical If file is a symbolic link, link to the file it points to.

−f, −-force If link exists, replace it (but see STANDARDS). The default is to error.
−i, −-interactive If link exists, prompt whether to replace it to the standard error stream.

−b, −-backup Use backup scheme specified by $VERSION_CONTROL, or
−-backup=existing.

−-backup=off|none Don’t create back-ups for replaced links, don’t replace existing links
unles −f|−i. This is the default.

−-backup=simple|never If a link already exists, move it to linksuff

($SIMPLE_BACKUP_SUFFIX or ~ by default) instead of replacing it.
Implies −f unless −i.

−-backup=numbered|t If a link already exists, move it to link.~num~ instead of replacing
it, where num st arts at 1 and increases monotonically (the director y con-
taining the link is read to find the highest present value of num). Im-
plies −f unless −i.

−-backup=existing|nil| −-backup=numbered if a numbered back-up already exists for a
given link, else −-backup=simple.

voreutils 5a9f9f29 December 16, 2024 1

LN (1) General Commands Manual LN (1)

−S, −-suffix=suff Append suff to links backed up wit h −-backup=simple. De-
faults to $SIMPLE_BACKUP_SUFFIX, else ~.

−n, −-no-dereference If into is a symbolic link to a director y, treat it as-if it were a
regular link, rat her than a director y. Ignored if −T.

−T, −-no-target-directory Never treat into as a director y. Supersedes −n.
−t, −-target-directory=into Set into at the start instead of end.
−d, −F, −-directory Ignored for compatibility with the GNU system and

4.3BSD−Reno.

All −-backup values are prefix-matched (−-backup=s is equivalent to −-backup=simple, &c.).

ENVIRONMENT

VERSION_CONTROL Default backup scheme for −b.
SIMPLE_BACKUP_SUFFIX Replaces the default −-backup=simple suf fix of ~.

EXIT STATUS

1 if couldn’t link , multiple files given and into is not a director y (or is a symlink to a director y if
−t), a back-up couldn’t be made, a back-up couldn’t be undone after a linking failure, link exists but
−f|−i not given and not making back-ups, a file and its link are actually the same, or making a link
failed.

NO TES

Clasically, anyone can make a link to any file they can stat(2), but under Linux, the
fs.prot ected_hardlink s sysctl may prevent linking other users’ files with EPERM (cf. proc(5) for precise
semantics).

SEE ALSO

cp(1), link(1), ls(1), mv(1), readlink(1), realpath(1), rm(1), unlink(1), rpmatch(3),
inode(7)

STANDARDS

Violates IEEE Std 1003.1-2024 (“POSIX.1”) because −P is the hard default, instead of whatever link(2)
does; only −sPLf are standard, and the standard requires link or into to be specified (but this usage
is nonetheless supported by every implement ation). −vribSnTt are extensions, compatible with the
GNU system. ln is free to refuse files which are director ies. All other implement ations refuse them
unless −d|−F (if a flag to allow them exists at all). They are extraordinar ily unlikely (i.e. there is no
known modern configuration) to work anyway. Either −L or −P may be the default, depending on what
the default behaviour of link(2) is. All systems except the are as-if −P.

If the link exists and is not the same as the file, −f (and thus the −i extension as well) is defined as
Actions shall be performed equivalent to the unlink() function called using the destination path as
the path argument.

but, if the subsequent linking fails, actually unlink(2)ing the destination fails catastrophically by "just
having removed the destination". Instead, this implement ation creates the link in the director y of the
destination under a new random name (.ln{random}), then rename(2)s it over the old link.
rename(2) is atomic (link exists at all times) and this provides a loss-proof methodology which (af ter
explicitly rejecting director ies) is equivalent to the one described by the standard.

−back-ups are similarly created by eit her linking them to their new name, or, if that fails, renaming
them. On failure, the new link is either removed, or the back-up restored. If linking works, atomicity is
preser ved.

Similar schemes are used by the GNU system (except it doesn’t try to link — just move — back-ups). On
the GNU system, if −-backup=existing and a file has a backup numbered 0, it’s treated as-if it
didn’t have a numbered back-up at all.

voreutils 5a9f9f29 December 16, 2024 2

LN (1) General Commands Manual LN (1)

HISTORY

Research UNIX

Appears in the UNIX Prog rammer’s Manual as ln (I):
NAME ln -- make a link

SYNOPSIS ln name
1
[name

2
]

DESCRIPTION [...]
It is forbidden to link to a directory or to link

across file systems.

The latter restr ixion is enforced by sys link (II) (if only because there’s no st_dev equivalent yet).
ln itself errors if name

1
doesn’t exist or is a director y.

This is because sys link (II) allows link s to director ies but only for root, which itself is because
sys mkdir (II) (also root-only) only creates a director y node without the required . and .. link s.
mkdir (I) is set-user-ID root and creates them explicitly, acting as-if mkdir(dir); link(dir ,
dir/.); link(. , dir/..).

Version 4 AT&T UNIX sees a SYNOPSIS of
ln name1 [name2]

and a DESCRIPTION that says what links are. mkdir (II) gener icises to mknod (II).

Version 7 AT&T UNIX ships the same manual but accepts −f, which doesn’t error if name1 is a direc-
tory, and, if name2 is a director y, creates the link under that director y. This basically completes the
present-day calling convention (for a single file).

The BSD

1BSD has lnall (VI) ("make link s to a number of specified files"), synopsised as
lnall file [file ...] director y

This is effectively present-day ln file [. . .] into (but, notably, the only check it does is if
directory is one, but not if any of the files aren’t). cpall (VI) and mvall (VI) can also be
found, with equivalent calling conventions (but those just exec() cp and mv for each given file).

It also ships lntree (VI) ("make a duplicate tree using links") (and cptree (VI) and rmtree (VI)),
synopsised as

lntree [−] [−q] source dest
this prog ram is the equivalent of cp −r source dest (but making links instead of copying), if both
source and dest are existing director ies on the same filesystem, dest is not a subdirector y of
source, and source has no mountpoints below it. If source cont ains devices (except quota files),
and the standard input stream is a teleype, and −q was not given, then the devices are logged and the
linking prompted for. The entire director y tree under source is then reproduced under dest. The
mode of created director ies is preser ved; if run as root, the ownership and quotas are preser ved as well.
The maximum tot al pat h lengt h is 100 bytes.

2BSD doesn’t include lnall or lntree.

3BSD naturally ships Version 7 AT&T UNIX ln but ln(1) is now "ln, lnall − make link s" wit h a
SYNOPSIS of

ln name1 [name2]
lnall name ... director y

lnall is as in 1BSD.

4.0BSD merges it into ln, and ln(1) is "ln − make link s", synopsised as
ln name1 [name2]
ln name ... director y

−f is still there and undocumented, but the usage is other wise as-expected.

4.2BSD is the first sys tem with symbolic links (default of −L, comment says "/∗ well, this

routine is doomed anyhow ∗ /") and a SYNOPSIS of
ln [−s] name1 [name2]
ln name ... director y

−s is as present-day (and allowed in all for ms). −f is still there.

voreutils 5a9f9f29 December 16, 2024 3

LN (1) General Commands Manual LN (1)

4.3BSD is resynopsised as
ln [−s] sourcename [targe tname]
ln [−s] sourcename1 sourcename2 [sourcename3 ...] targe tdirector y

wit h no changes.

4.3BSD−Tahoe implies that linking director ies is allowed if "the proper incantations are supplied".

Syst em V

CB-UNIX since at least version 2.1 has cp(1) ("cp, ln, mv − copy, link , or move files"), with SYNOPSIS

cp [−d] file1 [file2 ...] targe t
ln [−d] file1 [file2 ...] targe t
mv [−d] file1 [file2 ...] targe t

These are all the same binary linked toget her, distinguished by the invocation name. Director ies are re-
fused by ln; if any file and target are the same (defined as "both exist and correspond to the same
i-node on the same device"), linking is refused. This is different from the present-day condition of "both
name the same director y entr y".

The usage is as-expected. If −d "will cause the date of the original file to be ret ained" (if run as the
owner of file1 or root: standard utime(2) semantics apply).

mv is documented as, if the file exists, is not writable, and the standard input stream is a teletype,
prompting with the name and mode to replace it. If the file is writ able or the standard input stream is not
a teletype, then it’s alway s replaced. "Replacing" here actually means unlink(2) because mv work s by
link(2)ing. This has all the pitfalls outlined in STANDARDS.

In AT&T System III UNIX ln does this too, so it’s likely that ln does it too here as well. This makes this
and derived implement ations replace-by-default, contrar y to historical behaviour.

CB-UNIX was, among others, the basis for AT&T System III UNIX, where it first saw light outside AT&T,
and has a SYNOPSIS of

cp file1 [file2 ...] targe t
ln file1 [file2 ...] targe t
mv file1 [file2 ...] targe t

and an undocumented −f flag that removes the prompt.

AT&T System V Release 2 UNIX sees a SYNOPSIS of
cp file1 [file2 ...] targe t
ln [−f] file1 [file2 ...] targe t
mv [−f] file1 [file2 ...] targe t

cp didn’t use −f, but now also doesn’t accept it. "If target is a file, its contents are destroy ed." is noted
for the first time. ln is explicitly named in the prompting behaviour.

AT&T System V Release 4 UNIX sees a stand-alone ln(1), synopsised as
ln [−f] [−n] [−s] file1 [file2...] target

but this is still the same binary wit h the same general semantics. This is the first sys tem with symbolic
link s (t he default is −P), and −s is as present-day. The replacement prompt is suppressed if target is
already a symbolic link, too. −n refuses to replace existing targets outr ight (−f overrides it). −s is
unaf fected by −fn (and same-file and existence processing) and simply runs symlink(2) (making it al-
ways behave as-if −n).

/usr/ucb/ln is 4.2BSD’s.

St andards

System V Interface Definition Issue 2 (“SVID2”) includes AT&T System V Release 3 UNIX cp(1) as
cp(BU_CMD), editor ialised to break out each program’s behaviour explicitly.

This is included in X/Open Portability Guide Issue 2 (“XPG2”), and X/Open Portability Guide Issue 3
(“XPG3”) allows promp t responses to start wit h "t he locale’s equivalent of y" instead of just y.

voreutils 5a9f9f29 December 16, 2024 4

LN (1) General Commands Manual LN (1)

IEEE Std 1003.2 (“POSIX.2”) invents "ln — Link files", synopsised as
ln [-f] source_file targe t_file

ln [-f] source_file . . . target_dir

−f/t arge t-exists semantics are as present-day (that −f "is an undocumented feature of many historical
versions ..., allowing linking to director ies" is acknowledged, but discounted as just-change-it), but same-
file detection is omitted, and "whether a director y can be linked is implement ation defined". This st an-
dard doesn’t include symbolic links, but recommends −s to mean making them on systems that do.

X/Open Portability Guide Issue 4 (“XPG4”) uses this ln verbatim, but includes symbolic links. Linking
is defined in terms of "running link()" but link() doesn’t really specify what happens if given a sym-
bolic link.

IEEE Std 1003.2b (“POSIX.2b”: Shell and Utilities — Amendment) adds −s, as-expected.

This is impor ted into IEEE Std 1003.1-2001 (“POSIX.1”).

IEEE Std 1003.1-2008 (“POSIX.1”) adds −P|−L, as present-day: wit hout eit her, the operation is still
link() (which can now explicitly do whatever). Wit h one of them, the operation is linkat() (also new
in this issue) with eit her 0 or AT_SYMLINK_FOLLOW. This ensures both the AT&T System V Release 4
UNIX and 4.2BSD behaviours are legal. Same-file detection is defined, as present-day: file and link
are considered the same if they have the same basename in the same director y, and are unequivocally ig-
nored-wit h-error (instead of potentially removed).

The BSD (again)

4.3BSD−Reno renames −f to −F (clearly just-changing-it in response to IEEE Std 1003.2 (“POSIX.2”)
draf ts).

4.4BSD, while not citing any POSIX publication (even though it’s out in time for IEEE Std 1003.2
(“POSIX.2”) and IEEE Std 1003.2b (“POSIX.2b”: Shell and Utilities — Amendment) draf ts), sees a
SYNOPSIS of

ln [−fs] source_file [t arge t_file]
ln [−fs] source_file ... [t arge t_dir]

(and a "/∗ XXX: deliberately undocumented. ∗ /" unchanged −F) where −f unlink()s
link if it already exists, precisely per POSIX.

voreutils 5a9f9f29 December 16, 2024 5

