
EXPR (1) General Commands Manual EXPR (1)

NAME

expr — evaluate expression

SYNOPSIS

expr (expr) [op expr] . . .

expr + argument, match string regex, length string, index string

characters, substr string position length [op expr] . . .

expr string : regex [op expr] . . .

expr integer {∗ , /, %} integer [op expr] . . .

expr integer {+, −} integer [op expr] . . .

expr expr {<, <=, =, !=, >=, >} expr [op expr] . . .

expr expr & expr [op expr] . . .

expr expr | expr [op expr] . . .

DESCRIPTION

Wr ites the evaluation of the expression given as the arguments, followed by a newline, to the standard

output stream. Many of the operators (()∗ <>&|) are special in shells — make sure to escape or

stringify them.

An expression qualifies as a number if it’s a signed 64-bit integer ([−92233720368547 75808,

92233720368547 75807]), decimal, with only the optional ‘−’ allowed.

All indices are 1-based according to characters in the current locale. Each inv alid multi-byte sequence is

a separate character, but regular expressions stop matching at invalid sequences.

Operators

In chunked descending precedence; all binary operators left-associative.

(expr) expr

+ argument Special case: immediately consumes argument (t he next token) as a

value, regardless of any special meaning.

match string regex string : regex

length string Character count in string.

index string characters

The first position in string of any character from characters, or 0 if

none.

substr string position length

[position, position + length] subsection of string. Emp ty if

position or length are ≤ 0 or not integers.

string : regex The length, of the match of the basic regular expression regex matched to

string, anchored to the beginning (i.e. regex must match the start of

string — this is similar to prepending a "^" to regex), or 0 if none.

If regex has a capture group, evaluates to the first capture group (\1), or

the null str ing if the match failed, instead.

int ∗ int Product of ints.

int−l / int−r int−l divided by int−r.

int−l % int−r Remainder from division of int−l by int−r.

int + int Sum of ints.

int−l − int−r int−r subtracted from int−l.

expr < expr

expr <= expr

expr = expr

voreutils 5a9f9f29 July 7, 2024 1

EXPR (1) General Commands Manual EXPR (1)

expr != expr

expr >= expr

expr > expr If both expressions are integers, the result (0 or 1) of the corresponding

compar ison. Ot herwise, the result of the corresponding compar ison be-

tween the str ings according to the current locale’s collating sequence (dic-

tionar y order).

expr−l & expr−r If neither expression is the null str ing or 0: expr−l. Other wise 0.

expr−l | expr−r If expr−l is neither the null str ing nor 0: expr−l. Other wise, if

expr−r isn’t the null str ing: expr−r. Other wise 0.

expr−l & expr−r expr−l if neither expression is the null str ing or 0; other wise 0.

expr−l | expr−r expr−l if neither the null str ing nor 0; other wise expr−r if not the null

string; other wise 0.

ENVIRONMENT

EXPR_DUMP If set, writes the final parse tree with parent heses around every expression, to the standard

er ror stream. This is a debugging feature and will be removed.

EXIT STATUS

0 The expression evaluated to neit her the null str ing nor 0.

1 The expression evaluated to the null str ing or 0.

2 Synt ax er ror in expression, non-integer passed to an arithmetic operator, or division by zero.

3 Ar ithmetic overflow in ∗ , +, or −.

EXAMPLES

$ expr 2 + 2 \∗ 2
6
$ expr \(2 \) + \(17 \∗ 2 \- 30 \) \∗ \(5 \) + 2 - \(8 / 2 \) \∗ 4
8

$ file=’Makefile’; expr "$file" : ’.∗ /\(.∗ \)’ \| "$file"
Makefile
$ file=’/usr/src/voreutils/Makefile’; expr ...
Makefile

$ file=’Makefile’; expr "$file" : ’\(/\)[^/]∗ $’ \| "$file" : ’\(.∗ \)/’ \| ’.’
.
$ file=’/Makefile’; expr ...
/
$ file=’/usr/src/voreutils/Makefile’; expr ...
/usr/src/voreutils

However
$ file=’length’; expr "$file" : ’.∗ /\(.∗ \)’ \| "$file"
expr: .∗ /\(.∗ \): extraneous token
$ file=’length’; expr + "$file" : ’.∗ /\(.∗ \)’ \| + "$file"
length

As part of a sh(1) prog ram:

#!/bin/sh
expr $# \<= 5 >/dev/null || {

echo "$0: Too many arguments" >&2
exit 1

}

voreutils 5a9f9f29 July 7, 2024 2

EXPR (1) General Commands Manual EXPR (1)

SEE ALSO

Most arithmetic operations can be done using a sh(1) arit hmetic expression ($((expr))), and basic

string manipulation with parameter expansion operators (the basename(1)-like above can be written as

${file##∗ /}, length "$var" is ${#var}, &c.); these should be prefer red for simple uses in

new applications, as they’re built into the shell and avoid unary operator SNAFUs.

test(1), strcoll(3), mbrtowc(3), locale(7), regex(7)

STANDARDS

Confor ms to IEEE Std 1003.1-2024 (“POSIX.1”); length, substr, index, and match are explic-

itly unspecified, for compatibility with Version 7 AT&T UNIX, and are scarcely suppor ted in non-AT&T

UNIX exprs (NetBSD suppor ts length, citing GNU system compatibility; the list ends here). Unar y

+ is an extension, originating from the GNU system.

Some expr implement ations accept flags (like Fr eeBSD’s −e) — be war y of the first argument starting

wit h a − , or start the argument list wit h a −− .

HISTORY

Appears in The Prog rammer’s Workbench (PWB/UNIX) User’s Manual, allowing (), |&+-∗ /%,

substr, length, and index, wit h the binar y operators corresponding solely to their C equivalents

on 16-bit ints.

Edition 2.3 of The CB-UNIX Prog rammer’s Manual sees 32-bit numbers, |, &, {=, >, >=, <, <=,

!=}, +-, ∗ /%, and :, wit h substr, length, and index listed as ARCHAIC FORMS. | is de-

scr ibed simpler, as expr−l if not nullar y and expr−r ot her wise (wit h no 0-folding), but the global be-

haviour is described as

No te that 0 is retur ned to indicate a zero value, rat her than the null str ing.

The present-day behaviour matches and falls out of this. The compar ison operators for non-integers are

byte-wise, owing to no sys tem localisation. : rejects patterns with more than one capture group, but is

ot her wise as present-day. Integer arguments to substr now default to 0 instead of being required to be

integers.

IEEE Std 1003.1-2008 (“POSIX.1”) notes that on some systems : is documented as literally injecting a ^,

supposedly making another one in the pattern plain text, despite not doing so and selecting the match

some other way — this is the case here. Of interest is also that the ARCHAIC FORMS are such be-

cause they "have been made obsolete by the : operator" — the suggested replacements are:

substr abcd 2 2 abcd : ’..\(..\)’ — this is mostly reasonable, but more accurate as

’..\(..\?\)’, and more gener ic as ’.\{2\}\(.\{1,2\}\)’.

length expr expr : ’.∗ ’
index abcd d abcd : d. Not even close! This is approximately seven centimeters

down from explaining how : is anchored and what that entails. Recreating

index is ver y likely impossible with :, even for a simple single-letter case.

match is also available, but wholly undocumented.

AT&T System III UNIX inher its the CB-UNIX manual page but str ips it of the unary operators.

AT&T System V UNIX removes substr, length, and index.

Version 7 AT&T UNIX, on the other hand, sees an expr compatible with CB-UNIX’s, but with an unre-

lated manual page, not mentioning the unary operators at all.

4.4BSD er rors on /% dividing by zero instead of performing the division (which resolves to zero on the

PDP-11 but a SIGFPE on the VAX).

voreutils 5a9f9f29 July 7, 2024 3

