
CHMOD (1) General Commands Manual CHMOD (1)

NAME

chmod — change file mode

SYNOPSIS

chmod [−R [−P|−H|−L]] [−fvc] [−− [no-]preserve-root] [−F from] mode[,mode] . . .
file . . .

chmod [−R [−P|−H|−L]] [−fvc] [−− [no-]preserve-root] [−F from] [+-=]num-mode
file . . .

chmod [−R [−P|−H|−L]] [−fvc] [−− [no-]preserve-root] [−F from]
−-reference=ref-file file . . .

Where modes are any of
[ugoa] . . .{+|−|=}[rwxXst]...
[ugoa] . . .{+|−|=}{u|g|o}[{+|−|=}[rwxXst]...]

DESCRIPTION

Changes the mode of files to match the specification or ref-file’s; wit h −F — only if the file
already is of that mode.

Only the owner may change a file’s mode. Symbolic link files are followed, since their modes are
meaningless.

File modes

Access to each file is governed by three triplets – one for the owner (user), group, and everyone else
(others) – in addition to a special triplet – set-user-ID, set-g roup-ID, sticky. The normal triplets each
govern read, write, and execute permission (it is poignant to note here that for director ies ex ecution gov-
er ns traversal — a director y you can read but not execute will only let you see what files it contains
(name, i-node, and potentially mode, cf. readdir(3)), but not use any files within (and, transitively, be-
neat h); conversely, a director y you can execute but not read will not let you discover its contents, but you
can use files whose names you know or guess).

Symbolic links’ modes are meaningless (and unchangeable on most sys tems). The most specific mode
alway s applies, i.e. you cannot read your own file if the owner’s read bit is clear, even if it’s set for group
or others. See inode(7) for the semantics of the special bits. symlink(7), path_resolution(7),
and credentials(7) are of decreasing interest as well.

The canonical represent ation, as given by ls &a. is to give them in their natural order, wit h rwx st and-
ing in for set bits and - st anding in for clear ones. The special access bits are a special case, rendered as
s (t for sticky) if the corresponding execute bit is set and S (T) other wise.
A table of the most common modes and their canonical and symbolic represent ations follows.

~/.profile /bin/chmod & ~ ~/.ssh /bin/passwd /tmp

6 4 4 7 5 5 7 0 0 4 7 5 5 1 7 5 5

110 010 010 111 011 011 111 000 000 100 111 101 101 001 111 101 101

rwx rwx rwx rwx rwx rwx rwx rwx rwx sst rwx rwx rwx sst rwx rwx rwx

rw- r-- r-- rwx r-x r-x rwx --- --- rws r-x r-x rwx rwx rwt

a=r,u+w a=rx,u+w a=,u+rwx a=rx,u+ws a=r wx,o+t

u=r w,go=r u=rwx,go=r x u=r wx,go= u=r wxs,go=rx ug=r wx,o=r wxt

~/.profile /bin/chmod & ~ ~/.ssh /bin/passwd /tmp

6 4 4 7 5 5 7 0 0 4 7 5 5 1 7 5 5

110 010 010 111 011 011 111 000 000 100 111 101 101 001 111 101 101

rwx rwx rwx rwx rwx rwx rwx rwx rwx sst rwx rwx rwx sst rwx rwx rwx

rw- r-- r-- rwx r-x r-x rwx --- --- rws r-x r-x rwx rwx rwt

a=r,u+w a=rx,u+w a=,u+rwx a=rx,u+ws a=r wx,o+t

u=r w,go=r u=rwx,go=r x u=r wx,go= u=r wxs,go=rx ug=r wx,o=r wxt

voreutils 5a9f9f29 July 19, 2024 1

CHMOD (1) General Commands Manual CHMOD (1)

mode and -F formats

Numer ic modes

Represented by a raw oct al value.

This is not actually a truly absolute mode when used for changing a director y’s mode, since set-user-ID
and set-g roup-ID bits are copied from the original mode. For example, setting a rwsr----- director y
to 750 would actually tur n it rwsr-x--- (but doing the same to any other type of file would yield the
expected rwxr-x---).

+-=-numer ic modes

Respectively add, remove, or fully set the mode. If instead the last example was specified as
+010 it’d become rwsr-x---
−200 r-sr-----

=750 rwxr-x---

Hence, =num-mode and num-mode dif fer only for director ies.

Symbolic modes, ugoa specified

Apply a set of changes to the original mode. The special bits are no longer split from their triplet – the
owner, group, and everyone are modelled as having four bits: read, write, execute, set-user-ID/set-g roup-
ID/sticky. a is a short-hand for ugo. The X mode is the same as x if the file is a director y or has any ex-
ecute bit set, and is meaningless elsewhere.

These behave intuitively; here’s some examples:
o= rw-r--r-- → rw-r-----

a−x rwxr-xr-- → rw-r--r--

g+rX rwx------ → rwxr-x--- rw------- → rw-r-----

rw------- (director y) → rw-r-x---

Symbolic modes, ugo copying, ugoa specified

Modes may also be copied across quadr uplets, but in this case the special bits are skipped. Additionally,
nor mal ar ithmetic may be welded after the copy.

g=u rwsr----- → rwsrwx---

o=g−w+t rwsrwx--- → rwsrwxr-t

u+g r-xrw---- → rwxrw----

Symbolic modes, ugoa omitted

In this case, only the bits allowed by the umask(2) are set (+=) or cleared (−).
+x +x -w -w =r w =r wx

0 2 2 0 2 7 0 2 2 0 2 7 0 2 2 0 2 7

rwxr-xr-x rwxr-x--- rwxr-x r-x rwxr-x --- rwxr-xr-x rwx r-x---

a+x ug+x u−w u−w u=rw,go=r u=rwx,g=r x,o=

+x +x -w -w =r w =r wx

0 2 2 0 2 7 0 2 2 0 2 7 0 2 2 0 2 7

rwxr-xr-x rwxr-x--- rwxr-x r-x rwxr-x --- rwxr-xr-x rwx r-x---

a+x ug+x u−w u−w u=rw,go=r u=rwx,g=r x,o=

Of these, +x and =r w[x|X] are realistically the only ones wor th the trouble, as "make this file default-exe-
cut able" and "reset the permissions of this file".

OPTIONS

−R, −-recursive Change ownership of all of files’ descendants, as well. Unfollowed
symbolic links are ignored.

−P Don’t follow any symbolic links dur ing the descent.

voreutils 5a9f9f29 July 19, 2024 2

CHMOD (1) General Commands Manual CHMOD (1)

−H Only follow files, but not any of their descendants. This is the de-
fault, and mirrors what happens without −R.

−L Follow all symbolic links.

−f, −-quiet, −-silent Don’t write stat(2) and chmod(2) errors to the standard error stream.
−v, −-verbose Log all processed files to the standard output stream.
−c, −-changes Log only files whose mode was different than what it was changed to.

−-no-preserve-root Allow files equivalent to /. This is the default.
−-preserve-root Refuse to process these files.
−F, −-from=from Only change ownership of files whose mode is already from. Only ab-

solute modes (and pure-numer ic) are allowed.
−-reference=ref-file Use mode of ref-file.

EXIT STATUS

1 if ref-file or file didn’t exist, a file was / and −-preserve-root was specified, or the
mode could not be changed.

SEE ALSO

chown(1), chmod(2), inode(7), symlink(7)

There is a finer-g rained way to configure access to files as well (ls −l mode ends in +), provided by
acl(5) via getfacl(1)/setfacl(1).

STANDARDS

Confor ms to IEEE Std 1003.1-2024 (“POSIX.1”); −R is the only flag specified by the standard. The
Numer ic modes and all Symbolic modes are standard, but +-=-numer ic modes are an extension, origi-
nating from the GNU system.

−fvc, −− [no-]preserve-root, −-reference are extensions, compatible with the GNU sys-
tem. −PHL is an extension, compatible with 4.4BSD−Lite — this implement ation, like the GNU system,
defaults to −H, BSD defaults to −P, AT&T System V Release 4 UNIX −R is −L. There are no require-
ments with regards to symbolic link traversal in the standard. The BSD car ries −f wit h dif ferent seman-
tics (add’ly exiting 0 on errors). −F is an extension.

With −R, the mode of the director y is changed before its contents. This matches AT&T System V
Release 4 UNIX and the GNU system (allowing one to make a directer y tree accessible), and is the ob-
verse of the BSD.

chmod −x file is equivalent to chmod −− −x file; this is a universally-av ailable extension.

On this implement ation, like on the GNU system, t is — naturally — att ached to o. On AT&T UNIX, it’s
att ached to u. The standard requires only that {+|−|=}t and a {+|−|=}t work .

There’s a fair amount of implement ation freedom with regards to the special mode bits — while it’s re-
quired that for Numer ic modes and Symbolic modes wit h = they’r e cleared on regular files if the mode
being set doesn’t include them, "For other file types, it is implement ation-defined whether or not requests
to set or clear the set-user-ID-on-execution or set-g roup-ID-on-execution bits are honored.". This imple-
ment ation’s choice for Numer ic modes aligns with the GNU system, and preser ves them only for direc-
tories. The BSD clears them alway s for Numer ic modes. This implement ation’s choice for Symbolic

modes wit h = diverges from the GNU system in that it alway s clears them if not specified, whereas the
GNU system also preser ves them on director ies. The BSD illegally alway s preser ves t in this case.
AT&T System V Release 4 UNIX preser ves the set-g roup-ID mode on director ies for Numer ic modes

and Symbolic modes wit h =.

Before mode This implement ation The GNU syst em The BSD

rws rws rwt 755 rwx r-x r-x

drws rws rwt 755 rws r-s r-x
rwx r-x r-x

[d]rws rws rwt =755 rwx r-x r-x N/A

voreutils 5a9f9f29 July 19, 2024 3

CHMOD (1) General Commands Manual CHMOD (1)

rws rws rwt a=r wx,go-w rwx r-x r-x

drws rws rwt a=r wx,go-w rwx r-x r-x rws r-s r-x
rwx r-x r-t

HISTORY

Research UNIX

Appears in the first edition of the UNIX Prog rammer’s Manual as chown(I):
NAME chmod -- change mode

SYNOPSIS chmod octal file
1
...

DESCRIPTION The octal mode replaces the mode of each of the files.

The mode is constructed from the OR of the following

modes:

01 write for non-owner

02 read for non-owner

04 write for owner

10 read for owner

20 executable

40 set-UID

Only the owner of a file may change its mode.

This can be thought of as sxrwrw, and, indeed, both ls −l and stat produce a str ing in a familiar
{d|x|u|-}{r|-}{w|-}{r|-}{w|-} for mat, though note that being a director y hasn’t yet been kicked out of
the special bit section, and if s is set, there’s no way to see if it’s execut able, since it takes precedence.

The execut able bit is global, which is how you get boot (I)’s BUGS of, i.a., "Should obviously not be
ex ecut able by the general user.".

sys chmod (II) additionally confir ms that root can also change the mode. An undocumented semantic
is that on director ies the sx modes are silently cleared, and, hence, mean nothing — the read bit governs
director y traversal.

Version 4 AT&T UNIX sees
4000 set user ID on execution

2000 set group ID on execution

0400 read by owner

0200 write by owner

0100 execute by owner

0070 read, write, execute by group

0007 read, write, execute by others

i.e. ss rwxrwxrwx, and ls produces the more familiar
{r|-}{w|-}{x|s|-}{r|-}{w|-}{x|s|-}{r|-}{w|-}{x|s|-} preceded by an explicit file type character.

No tably, while this system has [gs]etgid (II), a group ID in the i-node, and appears to have full group
credential handling, it doesn’t have a group ID in its six-field passwd (V), how they’re assigned or what
they’r e set to by login is not mentioned, there isn’t a group-ID-mapping counter-par t to getpw (III),
and ls −l only gives the owner.

Conversely,
For a director y, `ex ecute’ per mission is interpreted to mean permission to search the director y for a
specified file.

which is as present-day.

The Version 5 AT&T UNIX chmod (II) contains no surpr ises — inasmuch as all bits are copied — sans
the undocumented bit 1000 (already defined with a ISVTX (later described as "SaVe TeXt image")
macro) being cleared if the caller isn’t root. The only usage is for execut ables, whose text image is not
cleared from swap on exit (II) and exec (II) — this is the classical sticky-bit behaviour.

chmod sees a C implement ation, and with it the EXIT STATUS becomes the error count; this is not
documented.

voreutils 5a9f9f29 July 19, 2024 4

CHMOD (1) General Commands Manual CHMOD (1)

Version 6 AT&T UNIX also clears it on creat (II), regardless of credentials, and gains a
/∗ save swapped text even after use ∗ /

comment, which doesn’t elucidate much nomenclaturally; chmod (I) gains
1000 sticky bit for shared, pure-procedure programs (see below)

linking to
If an execut able file is set up for sharing ("−n" option of ld (I)), then mode 1000 prevents the system
from abandoning the swap-space image of the prog ram-text portion of the file when its last user ter-
minates. Thus when the next user of the file executes it, the text need not be read from the file sys-
tem but can simply be swapped in, saving time. Ability to set this bit is restr icted to the super-user
since swap space is consumed by the images; it is only wor th while for heavily used commands.

and ld (I) describes −n as
Ar range that when the output file is executed, the text portion will be read-only and shared among
all users executing the file. This involves moving the data areas up the the first possible 4K word
boundar y following the end of the text.

This is used by bas, cc (and its stages and subcompilers), ed, getty, glob, init, ld, ls, sh,
nroff, neqn, and as (and its second stage); the inclusion of nroff/neqn is surpr ising due to their
size, of bas — was Basic really that popular? — and of init since one may expect it to never exit and
the only smaller prog ram on the list is glob. This is all moot, since the mode isn’t set by the build
scr ipt, and indeed the archival Version 6 AT&T UNIX image doesn’t have the sticky bit set anywhere.

chmod (II) finally notes the root restr iction for sticky bit setting. passwd (V) gains a "numerical group
ID (for now, alway s 1)" field (while that’s not str ictly true, the groups are a right mess) and modern-day
group (V) and other group facilities appear. See ls(1) for the broader consequences of this, but this is
the first time where the group modes actually realistically mean anyt hing.

Version 7 AT&T UNIX passes −n (or functionally-equivalent −i) when building most programs but only
sets t on as (& 2nd st age), ld, and cc (&c.).

chmod(1) sees
A symbolic mode has the for m:

[who] op permission [op permission] ...
and

The first example denies write permission to others, the second makes a file execut able: Multiple
symbolic modes separated by commas may be given.

chmod o-w file chmod +x file
all described as-if present-day. Naturally, there are some implement ation oddities:

u governs s trwx (!),
g governs s rwx , and
o governs rwx, but
a governs trwxrwxrwx

so they’re not actually the same. As a consequence of the latter and an unfor tunate implement ation of
the = operator, Symbolic modes, ugoa omitted wit h = are just about meaningless, e.g. turning
rwsrwsrwt into --S-wS-w- if no modes are specified (instead of the expected ---------). You
can mix numeric and symbolic modes with commas, à la 17 7 7,g-r.

The BSD

4.3BSD adds the X mode, as present-day, −f, similar to present-day but additionally forcing the EXIT

STATUS to 0, and −R, like present-day wit h −P, except modes of all symbolic link targe ts are changed.
Symbolic modes starting with a − continue to be accepted.

4.3BSD−Reno changes the mode of symbolic link files based on the mode of the link itself. −R sees a
very-early-fts(3)-based rewrite and the same problem plagues those files, but, since it passes
FTS_PHYSICAL and doesn’t filter out symbolic links any -more, this also applies to all children. Natu-
rally, this is unintended (and the documentation hasn’t changed to reflect this) and no longer at all close
to present-day. In another departure, −R changes the mode of a director y af ter, instead of before, visit-
ing it. Why is unclear, since this prevents chmod −R +rX from working.

voreutils 5a9f9f29 July 19, 2024 5

CHMOD (1) General Commands Manual CHMOD (1)

On the other hand, mode parsing itself migrates into setmode(3) and becomes almost the same — still
missing ugo copying — as moder n BSD (cf. St andards) — fitting, since chmod(1) cites IEEE Std
1003.2 (“POSIX.2”) compatibility, noting tX being extensions. The BUGS section grows "There’s no
per m option for the naughty bits.". The meaning of this is unclear, since perm — rwxXst — includes
all special bits. A S_ISTXT macro is added as an alias for S_ISVTX as a more natural consequence of
"save text".

Flags are parsed with getopt(3), but as an undocumented compatibility extension, if a flag argument
st arts wit h −r, −w, or −x it’s treated as a −mode. This means that chmod −X, for example, yields an er-
ror, for no appreciable reason.

4.4BSD rejects garbage at the end of num-mode, adds −H — as present-day — and −h — to follow all
symbolic links (equivalent to present-day −L). Expectedly, symbolic link behaviour is fixed and as
present-day. −f is removed from the manual; the rationale for this is not given.

4.4BSD−Lite’s −f, rat her than being
/∗ no longer documented ∗ /

becomes
/∗ XXX: undocumented. ∗ /

−h grow s a truly insane — given that the manual cites IEEE Std 1003.2 (“POSIX.2”) compatibility —
comment of

/∗
∗ In System V (and probably POSIX.2) the -h option

∗ causes chmod to change the mode of the symbolic

∗ link. 4.4BSD’s symbolic links don’t have modes,

∗ so it’s an undocumented noop. Do syntax checking,

∗ though.

∗ /
and forbids it from being specified with −R, which in exc hange grows a full suite of −PHL, as present-
day, wit h −P being the default, whereas this implement ation’s default is −H. All valid modes in flag po-
sition are accepted, same as this implement ation. This includes −ugo for the freshly-accepted ugo

copying.

NetBSD 1.3 introduces lchmod(2) and modes on symbolic links, and makes −h change them. They still
do nothing.

Syst em V

AT&T System III UNIX uses Version 7 AT&T UNIX chmod ex cept umask(2) handling is removed, mak-
ing Symbolic modes, ugoa omitted the same as Symbolic modes, ugoa specified wit h a.

AT&T System V UNIX clears the set-g roup-ID bit when setting the mode and the group of the file differs
from the group of the process.

AT&T System V Release 3 UNIX adds locks (cf. fcntl(2) F_SETLK, lockf(3)), with a common inter-
face for advisory (cooperative) and mandator y (ker nel-enforced by EAGAIN on incompatible access).
Picking between them is done by overloading the set-g roup-ID bit when g−x. So one may say

2755 is rwx rws rwx, but
25 45 is rwx rwl rwx for regular files.

or one may say that regular-file S became l.

For the new 0413 a.out(4) for mat, the sticky bit means that the text stays in RAM, not swap.

The addition of this overloaded mode, expectedly, complicates the symbolic mode semantics greatly;
thankfully, the user is given an uncharacter istic amount of guidance and quite reasonable war ning and er-
ror messages. u. Having either s bit set wit h the cor responding x bit clear is illegal, and clearing the
latter will clear both. Similarly, setting l and g+x or g+s toge ther is also illegal. l work s regardless of
(lack of) ugoa.

AT&T System V Release 4 UNIX adds −R (modes in argument position accepted), changing the mode of
the director y before visiting it. The EXIT STATUS wit h −R is the error count for files (but not de-
scendants). All symbolic links are explicitly followed and the 0413 cour tesy is extended to ELF execut a-

voreutils 5a9f9f29 July 19, 2024 6

CHMOD (1) General Commands Manual CHMOD (1)

bles.

Additionally, wit h no rationale:
/∗

∗ The ISGID bit on directories will not be changed when

∗ the mode argument is a string with "=".

∗ /
and

/∗ The ISGID bit on directories will not be changed when the mode argument is

∗ octal numeric. Only "g+s" and "g-s" arguments can change ISGID bit when

∗ applied to directories.

∗ /

St andards

System V Interface Definition Issue 2 (“SVID2”), specifies that, in addition to the set-g roup-ID-clear ing
mechanism above, the set-user-ID bit is cleared when not run by root. This doesn’t match any AT&T

System III UNIX or AT&T System V UNIX system. The 01000 (t) bit is described as "Reser ved.". The
chmod utility is the same as AT&T System V Release 1 UNIX, but with 1000 "reser ved"ed and t re-
moved; this, naturally, contradicts the syscall.

X/OPEN Por tability Guide (July 1985) copies that chmod() verbatim.

X/Open Portability Guide Issue 2 (“XPG2”) includes System V Interface Definition Issue 2 (“SVID2”),
chmod. It’s eit her here or in Issue 3 that the chmod() set-user-ID restr iction is changed to "Additional
implement ation-dependent restrictions may cause the S_ISUID and S_ISGID bits in mode to be ig-
nored.".

IEEE Std 1003.2-1992 (“POSIX.2”) re-defines chmod in its modern for m (sans t), adding −R and the X
mode.

The director y-t hen-contents vs. vice-versa is as present-day ("Since neither method is clearly better and
users do not frequently try to make a hierarchy inaccessible to themselves, the standard does not specify
what happens in this case."). Numer ic modes are marked obsolescent, even though no requirement that
the phy sical mode numbers match the numeric interface is placed.

The Single UNIX Specification (“SUS”) impor ts that chmod and standardises S_ISVTX for director ies,
shaded UX ("X/Open UNIX Extension", equivalent to moder n-day XSI), matching normal sticky direc-
tory behaviour. t (or numeric 1000) isn’t included in the chmod inter face, howe ver. It also shades
Numer ic modes UX.

Version 3 of the Single UNIX Specification (“SUSv3”) adds t (and numeric 1000) for S_ISVTX ("re-
stricted deletion"), shaded XSI ("X/Open System Interface Extension"), and makes Numer ic modes

mandator y, bot h as present-day.

voreutils 5a9f9f29 July 19, 2024 7

