BASE64 (1) General Commands Manual BASE64 (1)

NAME
basenc, base64, base64url, base32, base32hex, basel6, base2msbf,
base2l1sbf, z85 — transcode RFC 4648, binary, or ZeroMQ data

SYNOPSIS
base64 [-w wrap]|[file]
base64url [-w wrap]||[file]
base32 [-w wrap]|[file]
base32hex [-w wrap]|[file]
basel6 [-w wrap]|[file]
base2msbf [-w wrap]|[file]
base2lsbf [-w wrap]|[file]
z85 [-w wrap][file]
basenc —- {base64base64urllbase32base32hexbasel6base2msbf|lbase21sb£f|z85}
[-w wrap][file]

base64 -d|[-i][file]

base64url -d|[-i][file]

base32 -d[-i][file]

base32hex -d[-i][file]

basel6 -d[-i][file]

base2msbf -d[-i][file]

base2lsbf -d[-i][file]

z85 -d[-i][file]

basenc —- {base64base64urlbase32base32hexbasel6base2msbf|lbase21sb£f|z85}
-d[-i][file]

DESCRIPTION
Without —d, encode £ile (standard input stream if "-", the default), mapping consecutive bits to the in-
dices into one of the following RFC 4648 alphabets:
base64 ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz
0123456789+/
base64url ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz
0123456789—_
base32 ABCDEFGHIJKLMNOPQRSTUVWXYZ234567
base32hex 0123456789ABCDEFGHIJKLMNOPQRSTUV

baselé6 0123456789ABCDEF

8len(input
If the input is not long enough (en(input) is not an integer), it’s padded with null bytes, ex-
log, (len(alphabet))

n_n

pressed as "="s.

base2?sbf use a different algorithm:
base2msbf yields the bits of each byte (as 01) in natural (most-significant-bit-first) order
base2lsbf likewise but in reverse (least-significant-bit-first) order

z85 uses the ZeroMQ 32/7Z85 algorithm, mapping consecutive 4-byte chunks onto 5 output bytes by
casting them to big-endian 32-bit unsigned integers, then repeatedly dividing by 85, with the remainders
used as an index into the alphabet (output in reverse order):
z85 0123456789%abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ .—:+="!/[R&<> () [1{}@%S#
Non-4-byte-multiple input is a hard error.

If wrap (default 76) is non-zero, newlines are inserted every wrap bytes, as well as a final one if the
output wasn’t empty.

With -d, decode it, mapping input bytes from the alphabet to their indices’ bits. Padding, if any, is re-
quired to decode the full message.

voreutils 5299129 July 22, 2023 1

BASE64 (1) General Commands Manual BASE64 (1)

base2?sbf decode in the expected way. z85 does the inverse operation, treating each 5 bytes as a
base-85 big-endian number, and outputting the resulting integer in big-endian order. The encoded input
not being a multiple of 8 or 5 is a hard error.

If bytes from outside the alphabet (except the newline) are encountered and —i wasn’t specified, a diag-
nostic is issued.

By definition, sequentially applying either two inverse transformations yields the same data: encoding
into any of these alphabets, carefully composed of bytes which universally have no special meaning, al-
lows lossless transmission of binary data as plain text at only a minor increase in size, equal to the

amount of alphabet text required to express one byte of input: 0 4/3=1.3), 1.6, 2, 8
log, (len(alphabet))

and 1.25 respectively.

basel6 is equivalent to a hexadecimal listing and base2msbf to a binary one. base32hex has the
useful property of retaining the sort ordering of the input (i.e. base32hex(data) < base32hex(dat2) <
data < dat2). The base64url alphabet is safe to use in paths (and URLs), and may be converted into
from the base64 alphabet by a simple tr ’+/’ ’—_’ invocation.

OPTIONS
—-d, —-decode Decode the input.
—-i, ——-ignore-garbage Don’t produce diagnostics and return successfully when a non-alphabet
byte is encountered while decoding.
-W, ——wrap=wrap Wrap the encoded output at wrap columns and terminate it with a new-

line. Defaults to 76.

basenc requires a —— algorithm flag to select the algorithm, but is otherwise equivalent to invoking
algorithmdirectly with the same arguments.

EXIT STATUS
1if file couldn’t be opened or read, contained garbage and —i wasn’t specified, or didn’t contain a
multiple of 4 bytes in z85 mode.

SEE ALSO
RFC 4648: https://tools.ietf.org/html/4648
ZeroMQ 32/Z85: https://rfc.zeromq.org/spec/32/7.85

STANDARDS
Compatible with the GNU system, which only contains base64, base32, and basenc. A compati-
ble base64 also appears in NetBSD 9.0.

HISTORY
4BSD introduced uuencode(1C) (and uudecode(1C)): a structured, whole-file approach including
the name and permissions in the encoded output, also using a 6-bits-per-byte encoding (but a fundamen-
tally different one), an enhancement to the uucp(l)/uusend(l) suite. IEEE Std 1003.1-2001
(“POSIX.1”) added —m, using the basenc encoding instead.

coreutils 6.1 (2006-08-19) adds base64, largely as present-day. base32 joins it in coreutils 8.25
(2016-01-20), and basenc in coreutils 8.31 (2019-03-10).

voreutils 5a9f9129 July 22, 2023 2

